Concavity Implies Attraction

نویسنده

  • LLUÍS ALSEDÀ
چکیده

We consider a skew product with the interval [0,a] as a fiber space and maps in fibers that are concave and fix 0. If the map in the base is an irrational rotation of a circle, then it has been known that under some additional conditions there exists a Strange Nonchaotic Attractor (SNA) for the system. The proofs involved Lyapunov exponents and Birkhoff Ergodic Theorem. We show that the existence of an attractor basically follows solely from the uniform concavity of the maps in the fibers. In particular, it does not depend on the map in the base, so it occurs also in a nonautonomous case. Moreover, we discuss the possible generalizations of the notion of a SNA and show the problems that can occur in the case when the map in the base is noninvertible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brändén’s Conjectures on the Boros-Moll Polynomials

We prove two conjectures of Brändén on the real-rootedness of the polynomials Qn(x) and Rn(x) which are related to the Boros-Moll polynomials Pn(x). In fact, we show that both Qn(x) and Rn(x) form Sturm sequences. The first conjecture implies the 2-log-concavity of Pn(x), and the second conjecture implies the 3-log-concavity of Pn(x). AMS Classification 2010: Primary 26C10; Secondary 05A20, 30C15.

متن کامل

An information-theoretic proof of Nash's inequality

We show that an information-theoretic property of Shannon's entropy power, known as concavity of entropy power [7], can be fruitfully employed to prove inequalities in sharp form. In particular, the concavity of entropy power implies the logarithmic Sobolev inequality, and the Nash's inequality with the sharp constant.

متن کامل

Log-concavity and Zeros of the Alexander Polynomial

We show that roots of log-concave Alexander knot polynomials are dense in C. This in particular implies that the log-concavity and Hoste’s conjecture on the Alexander polynomial of alternating knots are (essentially) independent.

متن کامل

Evaluation of the concavity depth and inclination in jaws using CBCT

Introduction: Nowadays, using implants as a choice in patient's treatment plans has become popular. The aim of this study was to determine the prevalence of mandibular lingual and maxillary buccal concavity, mean concavity depth and angle and its relation to age and gender. Materials and Methods: In 200 CBCT, concavity depth and angle were measured in 2 mm superior to the inferior alveolar c...

متن کامل

On the q - log - Concavity of Gaussian Binomial Coefficients 335

We give a combinatorial proof that k l-k-1 l + t q q q q a polynomial in q with nonnegative coefficients for nonnegative integers a, b, k, lwith a>~b and l~>k. In particular, for a=b=n and l=k, this implies the q-log-concavity of the Gaussian binomial coefficients k , which was conjectured q by BUTLER (Proc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011